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ABSTRACT

An ad hoc method to solve boundary value problems which are posed on

infinite intervals is to reduce the infinite interval to a finite but large

one and to impose additional boundary conditions at the far end. These

boundary conditions should be posed in a way so that they express the

asymptotic behaviour of the actual solution well. In this paper a rigorous

theory is derived which defines classes of appropriate additional boundary

conditions. Appropriate is to be understood in the sense that the solutions

of the approximate problems converge to the actual solution of the 'infinite'

problem as the length of the finite interval tends to infinity. Moreover

boundary conditions which produce convergence with the largest expectable

order are devised.
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SIGNIFICANCE AND EXPLANATION

A boundary value problem on an infinite interval consists of a system of

ordinary differential equations, some boundary conditions at a finite point

and a continuity condition at infinity, for example it is required that the

solution converge to a finite limit as the independent variable converges to

infinity. This condition is problematic when solutions are sought

computationally. Therefore it is useful to cut the infinite interval at a

point which is far out and to impose some suitable, so called asymptotic,

boundary conditions at that far end and to solve the resulting two-point

boundary value problem which is now posed on a finite but large interval by

any appropriate code. Difficulties occur in finding appropriate asymptotic

boundary conditions in the sense that the solutions of the approximating two-

point boundary value problems converge to the 'infinite' solution as the

length of the interval converges to infinity. This paper devises suitable

asymptotic boundary conditions which produce a fast - in most practical

problems - exponential - order of convergence.
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A THEORY FOR THE APPROXIMATION OF SOLUTIONS OF BOUNDARY VALUE PROBLEMS

ON INFINITE INTERVALS

Peter A. Markowich

1. Introduction

Boundary value problems on infinite intervals, which are posed in the following way

(1.1) y = af(t,y), 1 4 t < , 6 e N U {0

(1.2) y e C([1,]) <=> y C C((I,-)) and lim y(t) exists

(1.3) b(y(1)) - 0

where f : R
+ 1 

+ R7 are often solved numerically by restricting the infinite interval to

a finite but large one and by imposing additional suitable boundary conditions at the right

end. The resulting two-point boundary value problem has the following form:

(1.4) tf(t,XT), 1 4 t 4 T, T >> 1

(1.5) b(xT(1)) = 0

(1.6) S(xT(T),T) = 0

and can be solved by any appropriate code. The questions this paper answers are the

following:

1) What class of asymptotic boundary conditions S(xT(T),T) = 0 imply convergence in the

following sense

(1.7) KxT - Y#[IT] * 0 as T +

where Izi[a,b] :m sup Iz(t)I and
te[a,b]

2) which asymptotic boundary conditions yield a reasonably fast order of convergence.

It will be shown that the admissible boundary conditions have to be constructed with

regard to the invariant subspaces and eigenspaces of the matrix

(.8) A 0(Y ) := f (-,y(-))
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and that the order of convergence doeends on the decay properties of the solution y of

(1.1), (1.2) and (1.3) and on the largest algebraic multiplicity of the eigenvalues of

(1.8) which have real part zero. calling this number r we will show that for all

admissible boundary conditions (1.6)

(1.9) Ix - yI const. (nT) IS(y(T),T)I, 0 < n
T Yl1ljj

holds if the solution y of the problem (1.1), (1.2), (1.3) is isolated and decays

sufficiently fast.

Wcrk on the solvability and asymptotic behavior of the solutions, of problems of the

kind (1.1), (1.2) and (1.3) as heen done by M. Lentini and H. B. Keller (1980), F. de Hoog

and Richard Weiss (1980a,b) and P. Markowich (1980a,b).

The paper is organized as follows: in Chapter 2 linear constant coefficient problems

are treated, Chapter 3 is concerned with linear time varying problems which have the

property that the matrix describing the system evaluated at infinity has distinct

eigenvalues, in Chapter 4 this assumrtion is neglected, Chapter 5 deals with nonlinear

problems and a practical problem from fluid dynamics is dealt with in Chapter 6.

The novelity of this paper in comparison to the above mentioned ones is that no severe

assumptions on f (t,y(-)) are made while Lentini and Keller (1980) require a certainy

convergence behaviour of this matrix as t approaches infinity.

The used techniques are similar to those used by de Hoog and Weiss (1980b) who treated

the case where f (-,y(-)) does not have an eigenvalue with a zero real part.
Y
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2. Linear Constant Coefficient Problems

The problem

(2.1) y' - taAy = t f(t), 1 4 t <, a e R, a > -1

(2.2) y E C(1,-])

(2.3) By(1) - B

shall be approximated by the 'finite' problem

(2.4) xT - tAxT 
= 

t'f(t) 1 r t 4 T,

(2.5) BxT(1) . a ,

(2.6) S(T)xT(T) = y(T)

as T approaches infinity. A is assumed to be a real n x n matrix with the Jordan

form J:

(2.7) A - EJE #

and J has the block diagonal form

(2.8) J = diag(J ,J 0,J

where J+ contains the eigenvalues of A with positive real part, J
0 

the eigenvalues

of A with a zero real part and J- the eigenvalues of A with a negative real part.

The dimension of these three matrices are r+, r0  resp. r_ and the geometrical

multiplicity of the eigenvalue zero will be called r0 .

The projection like matrices G+, GO, G- and G0 are obtained by taking the

matrices D+, DO, D- and D0, which are the projections onto the direct sums of invariant

subspaces of J belonging to eigenvalues with positive, zero, negative real part resp.

onto the direct sums of eigenspaces belonging to zero eigenvalues of J
0
, and by

cancelling all colmuns of these matrices which have only zero entries. So G+ is

n x r+, G0  is n x r0, G_ is n x r and G0 is n x r 0

By substituting

(2.9) u 
= 

E-
1
y

we get the problem

(2.10) u' tJu taE-If(t), 1 t <
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(2.11) u e C([1,o]) 

(2.12) BEu(1) = .

The general solution of (2.10), (2.11) is
r+r_

(2.13) u(t) = [O(t)G 0 ,O(t)G_]n + (Hf)(t), n C

where

(2.14) (t) = exp(---- j ta+l)

and H is a solution operator for the inhomogeneous problem:

Hf = H+f + H 0f + H_f

where

(Hf()t -1 .)-1 a jcd
(2.15) 0Hf)t) 4t) fD.0 ) ~ssd

t
(2.16) (H0f)(t) 0(t) f DO 

- 1
(s)

E
-
l
f(s)s 

ds
,

(2.17) (Hf)(t) (t) DO (s)E f(s)s ds

holds for 6 ) 1. f is assumed to be in C([1,1) and in order to make the integral in

(2.16) exist we assume that

(2.18) D0E- If(t) = 0(t-), > 0

Here r is the maximal dimension of the invariant subspaces of J associated with

imaginary eigenvalues. We assume that r > 0 because the case r = 0 has been treated by

de Hoog and Weiss (1980b). An analysis of the operator H can be found in de Hong and

Weiss (1980a) and Lentini and Keller (1980a). Markowich (1980b) has shown the following

estimates, which hold for t ) 6 ; 1

(2.19) U(H+f)(t)l r const. ID E-1 ft ,

(2.20) (f)lt)l 4 const, t
-
E maxis 

( + 1 )r+  C1.E-14
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(2.21) I(H f)(t)U 4 const. t
-  

max isU E-If(s)h tor y ) 0
64s~t

All constants are independent of f _and 6. Moreover we assume that B is a
ro+r -

(r0 + r-) x n - matrix, that 8 e R and that the (r0 + r-) x (r0 + r_) matrix

(2.22) BE((1)G0 ,$(1)G _ ] is regular

so that (2.3) defines r0 + r independent boundary conditions. According to Markowich

(1980a,b) these propositions are necessary and sufficient for the unique solvability of the

problems (2.1), (2.2) and (2.3) for all appropriate f's. Therefore S(T) has to be a
r++(r0-r 0) I

(r+ + (r0 - r0)) x n - matrix and Y(T) f R so that (2.5) and (2.6) set up

n boundary conditions.

At first we prove a stability estimate for (2.4), (2.5), (2.6):

Theorem 2.1: We assume that (2.22) holds and that (A), (B), (C) which are defined as

follows, are fulfilled.

(A) IS(T)E ( const. for T * ,

(B) IS(T)EG - O(T (
e
+1)(r 1)) for T +

0

(C) IES(T)EG ,S(T)EZ0 I- 1 const. for T +
+ 0

where 0 is the n x (r - r0) - matrix which is obtained by cancelling the columns of

the matrix Do . D - Do which have only zero entries.

Then the problem (2.4), (2.5), (2.6) has a unique solution xT  for all T

sufficiently large and xT fulfills the stability estimate:

(c+1)(r-1) (cx+l)r
(2.23) Ix TI [I,T] ( const.(181 + T IY(T)I + T 1f1[1,T)

r0+r -  n-(r0+r -)
if f f C([I,T]), 8 f R , y(T) f R

In order to prove this we first reorder J by permuting its lines and columns so that

0 1 ]
RJ 0 R-I 1 1 .0

S 0

(2.24) 2

r
0
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where R is an appropriate permutation matrix. This corresponds to a reordering of the

columns of E. The reordered matrix will be called E. Now

[6 r++(r O-r 0) }r+

(2.25) (a) Go~ (b) =o . o0

r~r -r
0~0 0

holds. From (2.24) it is easily concluded that

et - 1) 6 }r0- r0

1 0

(2.26) exp(-- a ~~ +- 1)) e e2 (ta+ r 1) r* 0

r 0 -r 0 r0

We substitute

(2.27) V

and get the problem

(2.28) -t JvT =t E f(t), 1 4 t < T

(2.29) Biv (1) = 0

(2.30) S(T)Ev T) -Y(T)

where J has the block structure

(2.31) J = diag(J ,3J i-

we write the general solution of (2.28) as follows:

(2.32) T (t) = At,T) + CWt)2 + v (t,T)

where
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exp(-L (tC,
1 

- T a+
1
)e

(2.33) e (a 1-1
A(t,T) I n

Le 6c 1

r+~ r 0

and

(2 * 34) C~t) -exp(-T- ta)1j

ro r_

r++(ro-r ) ro+r-
so that e and 2 e C holds. vi (t,T) is an appropriate particular

solution which will be defined later.

Fromn (2.26) we easily derive the following properties of el, e2"

(2.35) (a) e 1(0) 1 - , (b) e() a

(2.36) (a) e It -1) e (1 -t a+

(2.36) (b) e 2Cta~ ~ 0 - o e2(1-ta1

for all t e' R. A more general statement than (2.36) is

(2.37) (a) e (ta - 1)e (10 t ) e (ta+ - ta+
1 0 1 1 1 0 1

(2.37) (b) e ta - Ie(I = ( - t a+ 1 e (1 - t e( t+I

for all t0 l, C 3.

(2.38) (a) Ie(ta - 1)1 O~t (al(-) for t -
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(2.38) (b) le 2(t+1 - I)I = O(t 
(
a )(r- 1  

for t

The estimate (2.38) is derived by using that

(2.-39) exp k tO 1) a exp(i Y t
1
)F(t)(2.9) xp- + 1 a + 1

where Jk is an rk dimensional Jordan block with the imaginary eigenvalue iy and

F(t) is a real matrix whose entries are polynomials of maximal degree (r - )(a + 1).

By inserting (2.32) into the boundary conditions (2.29), (2.30) we get the linear

block system

[,A(T) A 2 -BEv (1,T)

(2.40) 1 2 p(T) - S(T T

3T 4(T) ] A &2 ( T,T)J

where

(2.41) (a) A (T) = [BEG+exp(- (I - T )),BEG0
1 a+ 1 0

(2.41) (b) A2 = [BrEG,BEG exp( )J

(2.41) (c) A3 (T) = [S(T)EG+,S(T)r0GeI(TQ
+ 

- 1) + S(T) 0e2(Ta
+  1 H

3 - T

(2.41) (d) A (T) = [S(T)EG ,S(T)iG_exp( T )]

The system (2.40) is soluble iff the matrices A2 and (A3 (T) - A4 (T)A2 A1(T)) are

invertible. A2 is invertible by assumption (2.22) and the existence of

(A3 - A4 A 
)

A ) has to be proven. We will show that

-I )-I ° 0 1 S()EO -1(+

(2.42) (A 3-A A A = T+11 [S(T)iG+,S(T)EG 01(1+o(1)) for T[ 6 e1 1 T )]

The existence of the right hand side of (2.42) is assured by proposition (C) of Theorem

2.1.

We split A3 (T) into:

a+1 a+1
(2.43) A (T) = [S(T)EG ,S(T)EG e (T + 1)) + [0,S(T)EG e (T 1)]

3 + 0 1 0 2
1 2

A(T) A (T)
3 3

and get
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(2.44) A I(T) (S(T)EG,,S(T 0 o e i+

From (C) and from (2.36)(a) we conclude

(2.45) (A C T)) a+ i[S(T)EG ,S(T)Er 0
eo e(1 -TO

1

moreover

A32 (T)(A I (T))- 1 [8,S(T)EG e2 CTa1 - l)e 1  - Ta' )JISCT)EG+,S(T)G 0

(2.*46) 01-
=(,-S(T)EG e (I - T )+] [SIE STE

02 )] +MGSTF 0)

holds because of (2.36)(b). The proposition (B) and (2.38)(b) assure that

(2.47) IA 2CT)(A 1CT))- 1 = o(I) for T
3 3

Therefore A3 (T)- exists and can be written as

-1 1 -1)i *2 1 -1i
C248 A 3 T)) = A T)) (I + i -i 'A3 (T)(A3 T)) I =

= CA C T)) CI ( + o(1)) for T' +
3

Moreover

(2.49) Ca) NA 4(T)I = oCT- (-)r1 for T +

(2.49) (b) NA Il 0(1) for T +

and therefore

(2.50) NA (T)A- A (T)CA CT))- 1 0 o~i) for T'
4 2 1 3

because of (2.48), (2.49), (2.45). so

-A3-A4A21 A -1 A3()-1 -I+i (4() 1 ( A3()-1 I

C A 1CT))- ICI + o(1)) for T'-
3

and (2.42) follows immediately. The linear equation (2.40) can now be solved:

-9-



A A ) A A (A -A A A )- ; (1,T)
42 1 442 3 4 2 1(252) JI 2 ; (3 A 1 ;'I(A3,; ) ' '

inserting into (2.33) the term A(tT)(A3 (T) - A4 (T)A;A(T))- appears. From(
ipptos (2.33 (2.33)

and (2.42) we get

+

exp( i- (t'a+1 -T +1 ' 61

(2.53) A(t,T)(A 3 - A4A
1
A )-1 eI

(t
Q+ 1-

1
)e1 (1-Ta

+ 1 
0(I)

3 e2 (t+ -1 )e1 (1-T
a+ 

I

Using (2.37) we conclude that

(2.54) IAI.,T)(A (T) A (T)A- A (T))-I I(+ f
3 4 2 1 ,T- OT

holds.

From (2.52), (2.33) and (A) we derive:

(2.55) Iv I, const.(IOI + T(a+l)Cr-1)IY(T)I + Iv (1,T)I +
T (1,T) p

+ TI1; r-1lI('lT,T)I + I(°,T)I
p p [1,T]

Now v(,T) has to be defined. We set

(2.56) f(tT) - { T 1 t ' T
fT), T 4t 4

and

t +
(2.57) CTH f)(t) : f exp(- -- (ta+l - sa+1 ))D Els.f~s)ds

T+T

H t ~ t+ a1 -

T

(2.59) (T H_f)(t) (HEE-f)(t), 6 < t D T, 1 < T

so that we can define:

-10-



(2.60) v(.T) HfT +T + TH f•
p T1 T'+ TRO T-

From the estimates (2.19) and (2.21) we conclude that

(2.61) (a) IHf + TH-fI[6,T] ' const*lfl[6•T]

because

(2.61) (b) TH+fl (6,T] 4 conat. IH+ (6,-)f( )16,-]

holds. Moreover (2.58) can be estimated aa follows

T

lTH 0f)(t) 4 const.IflIt,T] f (ta+ sa+1 (r-1) s do C

(2.62)

C const. T(a+l)rIfI [tT]

Altogether we get
(2.63) IHTft 6,T] 4 CTl+llr fl[6,T)

and

(2.64) 1v (T,T) - 1( THf)(T)| 4 const.|f|[lT ]

holds because (THOf)(T) - 0. From these estimates ant from (2.55) the stability estimate

(2.23) follows.

In order to derive a convergence statement we write the problem (2.1), (2.2), (2.3) as

follows

(2.65) y- - tAy - tf(t), 1 t 4 T, ye Wc ,"]) ,

(2.66) ByCL) - ,

(2.67) S(T)y(T) - S(T)y(T)

and subtract (2.4), (2.5), (2.6) from (2.65), (2.66), (2.67). We get

(2.68) (y - XT)' - t A(y - xT ) - 0

(2.69) B(y - XT)(1) - 0

(2.70) S(T)(y - xT)(T) f S(T)y(T) - Y(T) •

If S(T) fulfills the assumptions (A), (B), (C) Theorem 2.1 can be applied giving:

(2.71) ly - XT I1,T] const. T(a+l)(r-1)IS(T)y(T) -(T)I

-11-



Setting y(T) E 0 and using (2.9), (2.13) we get

(2.72) NY - xTI 1,T]( const. T(+)(rIs(T)E[(fT)G0(T)Gn + S(T)E(Hf)(T)

_+0

for some n e C 0 Assumption (B) guarantees that all columns of the fundamental matrix

o (T(+ 1)(Cr-i))
which are constant are dampened by an OCT ). All other appearing columns decay

exponentially. Therefore the term which originates from the solution of the homogeneous

problem converges as an 0(1) as T + w. So Assumption (B) is necessary for convergence

for general a and f. Now let

(2.73) If(t)I - O(t- (a+1)(2r-1)-£), £ > 0

From the estimates (2.19), (2.20), (2.21) we conclude that

(2.74) I(Hf)(T)I = O(T
- (a + 1 )(

r
I)-

c

holds. Altogether we get

(a+l)(r-1) -- C(2.75) ly - x TI(,T ] ( const.(T (IS(T)EG 01 + RS(T)E$(T)G_|) + T

If f(t) contains an exponentially decreasing factor so that it has the asymptotic behaviour

(2.76) If(t)I = o(teexp(- W t+
1
)), W > 0

then there is an operator H so that yp = EHf is a particular solution of (2.65) and

(2.77) I(Hf}(T)I = O(T8+(a+l)r(InT)exp(-  
-- T+1))

a + 1)

holds. A proof for this can be found in Markowich (1980b). In this case T in (2.75)

has to be substituted by T O+(a+
1
)(2r)inT exp(- - Ta

+1
).

An optimal choice S(T) = SD(T) would be so that

(2.78) [SD (TEG ,S ( T)EGj = e

holds. (2.78) is fulfilled for

U(G+) )TTT
(2.79) S D(T)E S S DE = ==> E S = [G +,G0

(G =0 T

These are linear equations for the rows of SD which can be chosen independently of T.

The asymptotic boundary condition (2.79), called projection condition fulfills (A), (B),

(C) in Theorem 2.1 and is optimal in the sense that it makes the first two terms on the

right hand side of (2.75) vanish.

-12-



3. Linear variable Coefficient Problems -Distinct Eigerivalues

In this chapter we analyze the problem

(3.1) y. - t A(t)y = to'f(t), a f N0o 1 t <

(3.2) y e cU1I,-])

(3.3) ByCI) = a

and we require the n x n matrix A(t) to fulfill

(3.4) A C C([1,-]), A(-) * 0 ,I

(3.5) A(t) A.t'i for t sufficiently large

Moreover let J0  be the Jordan form of A0  obtained by

(3.6) AG -EJ0 E
1

The following assumption is basic for this chapter:

(3.7) JO = diag(A ..... )X A, * X. for i

The substitution

(3.8) u =E
1 
y

gives the problem

(3.9) u' - t 'J(t)u t OE7f(t), 1 4 t <

(3.10) u e C([1.-])

where

1 2

The fundamental matrix of the homogeneous problem (3.9) can be represented as an asymptotic

series (see Wasow (1965) and Coddington and Levinson (1955)):

(3.12) *(t) -P(t)t D eQ(t)

where

-13-



(3.13) P(t) I + i
t-

i=I

(3.14) D = diag(dl,...,dn) ,

(3.15) Q(t) J + 1 + .. + Q t , Qi are diagonal matrices

hold. The unknown coefficients Pi, Qi and D can be calculated by algebraic operation

from the Ji's. An algorithm for that is given in Markowich (1980b), and therefore the

asymptotic behaviour of the basic solution can be determined knowing the Qi's and D.

Let D be the projection onto the direct sum of eigenspaces of J0 associated with0

those eigenvalues with a real part zero which produce a basic solution which is in

C([1,-]) and let Z0 be the projection like matrix which is obtained by cancelling those

columns of D0 which have only zero entries. G0 be a n x r 0  matrix. Then the general

solution of the problem (3.9), (3.10) is

0+ r_

(3.16) u(t) = [v(t)G 0 ,$(t)G_]n + (Hf)(t), n C C

where G- is defined as in Chapter 2 and up(t) = (Hf)(t) is an appropriate particular

solution, which has been described by Markowich (1980b). The operator H operates on the

space of all functions fulfilling

(3.17) f E C([6,-]), 6 ) 1 and If(t)I = O(t-ale,, C > 0 .

Then the estimate

(3.18) I(Hf)(t)I ( const. t-etnt * maxisa+l+£ f(s)i

s) 6

has been proven by Markowich (1980b). The particular solution on [1,-]  is obtained by

continuation. The boundary value problems (3.1), (3.2), (3.3) is - under the givenr 0 +r

assumption on A(t) and f - for all R 0 uniquely soluble iff the

(r.0 + r-) x (r0 + r-) matrix

(3.19) BE[ (1)G0$(1)G_] is regular

-14-
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Of course, B has to be a ( 0 + r_) x n matrix. We consider the approximating problems

(3.20 ) X; - t A(t)XT - Ouf(t), 1 4 t 4 T, a f NO 0

(3.21) BXT(1) = ,

(3.22) S(T)XT(T) = Y(T)
n-(r 0+r)

S(T) is a (n - (r0 + r_)) x n matrix and 'y(T) e R • For the following G+ is

defined as in Chapter 2 and G0 is the n x (r0 - r 0) matrix which is obtained by

cancelling the zero columns of D - 0• Then the following stability theorem, which is

the analogous to Theorem 2.1, holds:

Theorem 3.1: Assume that (3.19) and (A1 , (BI), (C) which are defined as follows, hold:

(A,) IS(T)I 1 const. as T * ,

(BI) IST)EG0  = o(1) as T +

(C1 ) I[S(T)EG+,S(T)EG0 ]lII const. as T + .

Then the problems (3.19), (3.21), (3.22) has a unique solution xT for sufficiently

large T. xT  fulfills the estimate

(3.23) Ix I 4 const.(1 1 + II(T)I + T +nTIfI
T X [1,T] [1,T]

r 0+r_ n- (r 0+r_
for f e C([1,T]). 8 e R o  

, Y(T) e R

The substitution

(3.24) VT = E
1 
xT

gives the new problem

(3.25) v = t J(t)V tE- If(t), 1 4 t 4 T3,5 T vT

(3.26) BEVT(l) - S ,

(3.27) S(T)EVT(T) = Y(T)

As the general solution of (3.25) we take for convenience

(3.28) vT(t) f(t)e-QT)T-D G+ +0]I I + *(t) G 0,G_] 2 + v tT)

r++(r 0-r0) ra+ r_

where e C 2 e C hold and vp (,T) is an appropriate particular

solution which will be defined later. 0(t) is the fundamental matrix as of (3.12).

Evaluation of the boundary conditions (3.26), (3.27) gives the linear block system

-15-
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[sEO(1)e Q(T) TD[G a BEO(1)[a0,G 1 &~1 f 6 BEV (1,T)

(3.*29) G]0- 2p i
I S(T)EP(T)[G *a S(T)EfT)GG EJ 2~ Y(T) - S(T)Ev p(T,T)

The matrix in the (1.1) position is bounded because of the defirnition of G+, G0 and

because of the diagonal form of Q(T) and D. The matrix in the (2.2) position is bounded

too, because *(t[Z G_] is the matrix, whose columns are the basic solution of the

homogeneous problem which are in C([1.,J) and because (A1) holds. Moreover

(3.30) IS(TEO(TI - o(1) as T -

because of (B1 ) and (3.12). The matrix in the (1.2) position is invertible because of

(3.19) and its inverse is, as the matrix, independent of T. Finally

(3.31) S(T)EP(T)[G+G 0] 1 9(T)E[G+.G0 1 + O(T

because of the asymptotic expansion for P(t), (C1 ) assures the bounded invertibility of

the matrix in the (2.1) position.

From (2.40) and (2.52) we conclude immediately that the system (3.29) has a unique

soltio (~,~ e n and the estimate

(3.32) VT I [1T const.(1I + IY(T)I + Iv p(.,T)l 1T

follows.

The particular solution v p(-,T) has to be defined now. We set

r0

(3.33) (a) v (-,T) =H 1f H1f + H()f + H()f, (b) H f H (1

p T T + TO0 T - TO T TOi

where

(~
1
) t -1 ai

(3.4)T + + ss f(s)ds

(3.35) (T H ( f)(t) fl*t) f D, 5'()nE f(s)ds, 1

and

-16-



t

(t) f 0 oi -(s)s E- f(s)ds, bE (1) holds
T

H (1)f)t
(3.36) T i )(t)

t

(t) f D O I (s)s E-f(s)ds, if (II) holds
6

D i is the projection onto that eigenspace of J0 which belongs to the ith eigenvalue

with real part zero and (I), (I) are defined as

(I) Re(Q(t)D0 i) + or (Re(Q(t)D0 i) E 0 and Re(DD0 i) ; 0)

(II) Re(Q(t)D0 i) - or (RE(Q(t)D i) E 0 and Re(DDoi) < 0)

From the considerations in Markowich (1980b), Chapter 3, we immediately conclude that

(3.37) 1H(1)fU 4 To' nTnflf ,
T (6,T] [6,T]

Therefore the estimate (3.23) follows and Theorem 3.1 is proven.

As in Chapter 2 the convergence estimate follows

(3.38) Ny - x TI,T ] < const.IIS(T)y(T) - y(T)l

for all (r+ + (r0 - r0)) x n matrices S(T) which fulfill (A1 ), (B1 ) and (C1 ).+( 0)0

Setting 'y(T) E 0 and inserting (3.16) we conclude

(3.39) Ny - XTI [1,T) < const.(1S(T)EO(T) (G0,G_] + US(T)E(Hf)(T)U)

The assumptions (A1 ) and (Bi) guarantee convergence for all f fulfilling (3.17) because

(3.18) holds. If

(3.40) S(T)EG = 0

convergence of the order T
- 

+ T- EnT follows. In many practical cases all eigenvalues

with real part zero produce exponentially decaying solutions and f also decays

exponentially. The operator H can be changed to an operator H, so that (Hf)(t)

decays with the same exponential factor (see Markowich (1980b)). In this case exponential

convergence follows from (3.39).

The optimal boundary condition is again the projection condition and it has to be

calculated from the equation

-17-



(3.41) SD(T)EP(T) D M M TI
DT

which is uniquely soluble because of the regularity o. E and P(T).

The asymptotic boundary.-condition

(3.42) SD(T)XT(T) = 0

would imply that

(3.43) SD(T)E(T)[G0,G ] R e

because of the form of (T). However, we do not know P(T), but we can calculate the

coefficients Pi of its expansion recursively (for the algorithm see Markowich (1980b)).

Having calculated P1,P2 ,.o., Pk we set

k

(3.44) P(T) I 1+ i piTi
i-i

and solve

(3.45) SD T)EP(T) =

!0T

instead of (3.41). Because

-k-i
(3.46) P(T) = P(T) + O(T

-  ) as T + 0

holds we get by a simple perturbation analysis

(3.47) S D(T) = S D(T) + O(T as T + 0

Therefore

(3.48) iS (T)E(T)[G0,G ]| I const. T 10(G 0 ,G ]I

holds and the boundary condition S (T)xT(T) - 0 implys at least convergence of the

order T
-k - 1 

if f E 0 holds. More generally speaking the order of convergence is

determinied by inserting (3.48) into (3.39).

However, this rather work-intensive procedure does inly make sense if some columns of

(t)[G 0 ,G_] do not converge exponentially. Only in this case the projection conditions

imply a significant improvement of the order of convergence.

-18-
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4. Linear Problems - The General Case

In this chapter we admit a general Jordan form of A0 . So we deal with problems of

the form (3.1), (3.2), (3.3) with the assumption (3.4), (3.5), (3.6).

Again we perform the substitution (3.8) and get (3.9), (3.10).

The fundamental matrix 0(t) of the homogeneous problem (3.9) can now be represented

as an asymptotic log-exponential power series of the following form

(4.1) 0(t) = P(t)tDeQ(t)

where

(4.2) P(t) t as t +, p

i=0

(4.3) D is a constant matrix in Jordan form

a+1 p p -
(4.4) Q(t) - diag(J0) - + Q + ... + Q

0a + 11)1 (a+1)-1
pp

and the Qi are diagonal matrices. diag(J0 ) is the matrix which has the same diagonal

entries as J0  and all other entries zero. The matrices TD and eQ(t) commute because

the diagonal elements of Q(t) which belong to a particular Jordan block of D are

equal. Moreover P(t) can be split up into:

(4.5) P(t) - P(1 ) (t) • P(2 ) (t) • P (3)t)

where

(4.6) P ll(t) I + P11it ,

i

(4.7) p )(t) ~ P, k 2,3(k P(k)i
t

i=O

P(2 )(t), P(3 )(t) are in block diagonal form too. The i-th diagonal block of P(2 )(t)

corresponds to that block in J0  which is obtained by gathering all Jordan blocks

belonging to the i-th eigenvalue of 30  and the j-th diagonal block of P( 3 )(t)

-19-



corresponds to the j-th eigenvalue of Q(t) where in both cases only different eigenvalues

are counted. Markowich (1980b) has shown that
(a+l)(r -l

(4.8) I(P (2t)) DiI < const. t

holds, where Di  is the projection onto the direct sum of invariant subspaces associated

with the i-th eigenvalue of J. and ri is the algebraic multiplicity of that i-th

eigenvalue. The statement (4.8) holds for the matrix P(2 ) derived as in Markowich

(1980b).

The matrix P(3 )(t)tD is the fundamental matrix of the system

(4.9) z' = (- B + - (x))z, Be C([1,)
x 2x

where

(4.10) u = P(1 )(t)P( 2 )(t)eQ(t)z

has been set. (4.9) has a singularity of the first kind of t obviously P(3 )(t)

and D are not uniquely defined, only their product is unique (neglecting multiplication

D -1 D+1
with a constant matrix from the right side). P (t)t = (P (t)t )t would also be a

(3) (3)

way of splitting the product. The algorithm given by Wasow (1965) establishes a matrix

P (t) which has a convergent power series expansion, but P() is not regular. We
(3) (3)

will show now that a representation can be given, so that P (3)() is regular. Therefore

we assume that B is in Jordan - canonical form:

(4.11) B = diag(B 1 ... ,Bq)

and Bi has the only eigenvalue bi, where Re(b i ) 4 0 for 1 4 i 4 s and Re(bj) > 0

for s + 1 ( j 4 n. We write (4.9) as

(4.12) =- Bz + I (B(x)z), ;(x) = - (x)
x x x

and set for 1 4 i < s

B

(4.13) zilt)- t
i  + (GBz l)t), 4 t <

where G is the operator defined in Markowich (1980b), Chapter 4 which applied to a

-20-
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function g defines an appropriate particular solution of the problem

1 1
(4.14) z'= - Bz + - , 5 x <

x x

where 6 1. Markowich (1980b) derived that

(4.15) (Gg)(t)I c const.(nt) +kt~IlU ,, 0 ( j max(dim(Bi))

holds if
(4.16) g(t) = t-C(Ent)-g(t), g'g e Cb([6,-H

where Cb ([S,)) is the space of all functions f c C([6,-)) which are bounded as

t + -. Setting

B. Re(b i ) dim(B )-1

(4.17) 0.(t) = It 11 c-t (Ent) , 1 i 1 S •

11We want to show that (4.13) establishes a fixed-point equation for z E A ai6where

(4.18) (A = {uiu(t) = U(t) (t)i U C Cb ([6,-)))},MuN = IUI 16')1

We want to show that the operator

(4.19) (l (z )(t) = t + (GBz)(t)

is a contraction on AO ,6 for 6 sufficiently large. From (4.13), (4.15), (4.17) we
1

conclude that i maps A i,6 into A Oil V Moreover I

(4.20) * (zil ) - i (z i2) i  IGB(z -i z i2)l 4 const. 6- (n6)]1z - ziI i

holds, and therefore * i is a contraction on A for 6 sufficiently large. From

(4.13) we conclude

S

z.t)=2j+dii(B) B

(4.21) z W (I + O(t1 (Ent) ))[ t i as t +

Now let s + I j 4 n hold, so that Re(bj) > 0. We substitute

-21-



b +1
(4.22) z - z. • tJ J

and (4.12) becomes

(4.23) (B- (b. + 1)I)l +-B(x)z, x 3 x 5

Now we set

[B-(b.+11I]

(4.24) z (t) - t + (GB )(t)

so that
tBj

~
(b.+1)I - dim(B.)-1

(4.25) 0 It I ct1(Xnt)
J

and (4.13), (4.21) implies that

r e
2 j+dimlBB) (b+)I

(4.26) z(t) = (I + O(t-
1

2(dnt) t oI

L

holds and from (4.22) we conclude

(4.27) z.(t) = (I + O(t -1(nt) )) t as t +

1

obviously the matrix

(4.28) z(t) = [z (t),...,z n(t)] - [I + o(t-1 (nt)m))t 
B
, m e N0

is a fundamental matrix of the system (4.9). Therefore P(3 )(t) and D in (4.5) and

(4.1) can be chosen so that

(4.29) IP (3)(t)- = I + 0(1)1 ( const.

holds.

-22-



Knowing the fundamental matrix asymptotically we can sort out the basic solution l

fulfilling .fC(11,11) so that the general solution of (3.9), (3.10) is

(4.30) u~t) - 0(t)3 0 ,G_]n + (Hf)(t), n C C 0

where H is defining an appropriate particular solution Hf on [5J if

(4.31) f(t) = t-(~~- (Xnt) kF(t), F C b((,)

where r is the maximal algebraic multiplicity of eigenvalues of J0which have real part

zero. Moreover
j+2

(4.32) I(Hf)(t)l 4 const. t - (tnt) 0 KA0 V n

The particular solution on (1,w) is obtained by continuation.

Aga. n the boundary value problem on the infinite interval is uniquely soluble for all

,r,+r5 C and f's which fulfill (4.31) iff the (r 0+ r-) x (r 0+ r-) matrix

(4.33) BEI(I)G ,f(1)G I is regular

Of course B is an (r, + r-) x n matrix.

The approximating problems have the form (3.20), (3.21), (3.22). We will again prove

a stability theorem.

Theorem 4.1. Assume that (4.33) and (A2 ), (B2 ), (C2) which are defined as follows, hold:

(A2) HS(T)l 4 const. as T +

(B2) NS(T)EP(T)G 0H=o(T (+)(-)

(C2) I(S(T)EP (1) (T)[G+,P (2) (T)P ()(T)G 0]) 1 = O(T

Then there is a unique solution xT of the problem (3.20), (321' (3.22) for T
r, +r_

sufficiently large and the following estimate holds for all a R
(r 0-r 0)+r+

(4.34) Ix I(1T 4 const.(IBN + T (a l)(r-1) I(T )h + T (o1)r r(Zn)JhfI7T

We substitute

w
T

(4.35) x t P tw() w w 0
xTt P() T T)T

wT
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and get three separate problems

+-t) )t) w t)
WT T

+o0 h0 0 a-zero

+ I (1)

(4.36) wwTt(t) t J0 (t) w 0T(t) + t aP (t)E f(t)

w T(t) - +(t) wT (t) f(t)

where

(4 .3 7 ) [(0 - 0 I -++

00  0~ =

+0
and the igenvalues of J+ have positive real part, the Cigenvalues of have a zero

real part and the eigenvalues of J have a negative real part. This structure can always
0

be obtained by reordering the columns of E. Now we rewrite the equation for w +

+ a++ + + + T
(4.38) w T(t) = t w ( t) + (3 (t) - J0

)  
)w T (t) + t f (t)

We define the general solution of (4.38) as:

+ 4i 414 + + +1H

(4.39) w +(t) = exp( t - -T + C HJ - J )w)t) + CH )(t)
T a +1 T. 0 T T4.

where T H+ is defined in (2.57)with E = I and J 0= i We derive

0

(4.40) ((1 - H (34+ - 3 ))w+ )( t) = Ctp -O(+ T a1)) + + ( H f ()
T + 0 WT e~a 4.1 T + +

de Hoog and Weiss (1980b) have shown that (I - TH+CJ J+3)) is invertible as operator on
0

CU[6,T]) with 6 and T sufficiently large, so that

(4.41) w C t) = *J, Ct,T) + +. Cf j+(t) C( C[6,T])

where 4

(4.42) (1.(T C - H+. (3 J0 )) lexp( ~JO (h -T'+)), h(t) =ta+

and

(4.43) (1) HI CJ+ -3))- Hfi
T4 + 4+ T + 0 T +4

Moreover, they have shown that
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(4.44) (a) 
4
I +(,T)[6,T) ( const., (b) IT+ +(f+ )I[6,T] fconst.1f|[6,T]

and from (2.57) and (4.42) we derive that

(4.45) +(T,T) = I

Now we define the general solution of (4.36) as[ +(tT)
T ] G+P(2 ) (t)P(3 ) (t)eQ(t)-QT) t 0 ] +

(4.46)

+ P (2)(tP(3) (t)e Qt) tDG0,GJ 2 +

( + ) (t)

r++(r0-r0) r 0 +r+ w (tT) ' I e C C 2 C
p 12

w (t,T)

where w
O
, w are appropriate particular solutions. This solution is defined on 16,T]

P p

and the corresponding solution on [1,T] is obtained by continuing '+ (*,T). Resubstituting

in (4.35) and evaluating at the boundaries sets up the linear block system for %, 2:
G+P()l)P3)8 ) Q ( )- Q (T )T - D a0 B@IIG,.

LS(T)EP (T)[G+,P2 (T)P(3Ma) I S(T)EO(T)[Z0,G ]
1I T++(2)+(3) 0

- BEP (1) W 0(1,T)
() p

w (1,T)

T* (f +)(T)

Y(T) - S(T)EP (T) w (T,T)
() p

w (T,T)
p

-25-
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The matrix in the (1.1) position is bounded, BEf(1)(a0,G I is independent of T and

invertible because of (4.33), the matrix in the (2.1) position fulfills (C2) and

(4.48) IS(T)EO(T)[ZG0 G]_ 4 ((1)T (+)r

holds because of (B2 ). From (2.40), (2.52) we conclude that

(4.49) I"T' 1,T] 4 const.(NBI + T (a~)(r-1) IY(T)I + IV (1,T)I +

+ T (al)(r1) IS(T)Rv (T,T)I + IV (-,T)I[1T

where

TV f )t)

(4.50) v (t,T) P (t) w 
0 
(tT) (H ((2) f)(t)

p (1) p T

w (t,T)
p

ha benusd. spitin (H
2
) (2) (2) (2) H(2)

ha ee sd.STttn T inoT+ ,TH
1 
o T'L where TH+ is already

defined by iif, we can define H (2 as we have defined H11 in (3.36) only the
T++TO0 TO0

Doi have to be substituted by the projections onto the invariant subspaces of D. The

estimate

(4.51) * T 06 (2 (1,T] 4cntT tlr XT) 30 f# [1,T]

results as in Chapter 3.

H(2) f can be constructed by the same perturbation approach we used for the

(2
construction of H ()f. We setT +

(4.52) T*()= -T
1  

--~~ 1 1
= H w-,T

where T H_ is defined in (2.59) with E =I and J = J 0and then

holds. Moreover the estimate

(4.54) I H ()fI 4 const.IfI
T - [1,T) (1,T]

is fulfilled. Because of (B2) and (3.36) we get
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(4.55) IS(T)E(TH 2)f)(T)I 4 const. T + (tnT)0T T 0f [1,T)

so that the estimate (4.34) follows.

Again the convergence estimate follows:
nt (m+I)(r-I)|sTyT ()

(4.56) ly - K.T,[1,T] 4 const. T IS(T)y(T) - YTI

for all matrices S(T) fulfilling (A2 ), (B2 ), (C2 ). Setting y(T) B 0 and using (4.30)

we get the order of convergence as follows:

(4.57) My - x I [,T) const. T (IS(T)Ef(T)[G 0G_)I + I(Hf)(T)I)

Assumption (C2 ) guarantees convergence for all f' which fulfill

(4.58) If(t)I - O(t- (Q )(2r-I)-) 0

because the columns in O(T) which may be constant as T * are dampened by the factor

o(T- (a )( .1)). Again if all columns of t(t) and f decay exponentially, the

convergence is exponential, too.

Still the question has to be answered whether there is a matrix S(T) fulfilling the

assumption of Theorem 4.1 and how it can be constructed. We set

(4.59) S(T)EP(1)(T) SI(T)

and choose S(T) so that:

(4.60) S(T)[Gu, - [ +:0'6i

(4.61) S(T)e,e,G_ e

and

(4.62) S(T)P(2 ) (T)P (3)(T)[e,G0 ,] T-(c+1)(r )[ G ]
10

T

because of the block structure of P(2 )' P(3 ) (4.62) is equivalent to

(4.63) S(T)[O,G 0 ,e = T-(a+
1  - I  

P -j -(T)Pc To(50) T ]P(3)I( 2I()

-27-
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The equations (4.60), (4.61), (4.63) determine S(T) and S(T) can be calculated from

(4.64) S(TI - S(T)P
1 

(TE

S(T) fulfills (B2 ) because of (4.62), the proposition (A2) follows from (4.8) and (4.29),

and (C2 ) is implied by (4.60), (4.62). This asymptotic boundary condition (with

Y(T) S 0) is the projection condition fulfilling

(4.65) S D(T)Ef(T)[G ,G 

In general we only can determine a finite number of coefficients of the expansion of P

P(2)' P(3)
° 

An algorithm is given in Markowich (1980b) and it is shown that

m
(4.66) P (2t) j S i(t)E P C(2(t)

where the matrices Si are in block diagonal form and their diagonal blocks are

(4.67) Sij(t) - diag(1 ,t-
gi,...,t" ) .

The Ei's are regular and

(4.68) P(2t) X- I + P 2lt as t

holds.

We denote by

M i i 13 _
(4.69) P C2)0t) = I I Si (tiE P M(t), P 2)0(t) - I + P (20t

that diagonal block of P(2 ) which is associated with the zero-real part eigenvalue of
ii i2

J0. Assume now that we know P(0 ...,p for i - I1l)m and
(2)0'' (2)0

k 2 > 
2
p(a + )(r - 1) - 1 then we set

k2m "i-

(4.70) PI S (tIEi (2)0 Ct, P(2 10 I I + V P2)Ot

i-l J=I
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and assume that we know

k 3

(4.71) p (t) I + I PI Pt k3 > p(a + 1)(r 1) 1

P MO)(t) consists of the first k3 + 1 summands of P(3 )0 (t) which is that block of

P(3 )(t) associated with the real paru zero eigenvalues of J0. Moreover we have to know

k 1

(4.72) P (1) (t) - I + I P( 1 )jt
- ,  

k, > (a + 1)(r - 1) - I 
j=1

Using P (1),(2)0,i(3)0 instead of P(1 ),P( 2 )0 ,P(3 )0  we calculate a matrix S(T) instead

of S(T) using (4.60), (4.61), (4.63), (4.64) and a perturbation analysis shows that

- -k-I
(4.73) S(T) S(T) + O(T

where

k2 + 1 k3 + 1
(4.74) k = min(k, P (a + 1)( - 1) - 1, p 1) ) (a + 1)(r 1) •

Therefore

(4.75) S(T)$(T)(G 0 ,G] = O(T-k-I)O(T)[G0G_1

and the order of convergence for homogeneous problems 
is at least T

(
a
+ )(r-

l
)- k - 1

The requirement that A(t) is analytical in t is very restricting, therefore we

will now admit matrices A(t) fulfilling

(4.76) AE C(1, l), A(! e C(+)+1([0 , ] 6 1

where i is the maximal algebraic multiplicity of an eigenvalue of A(-) with nonpositive

real part. Therefore A can be expanded:

(4.77) A(t) A 0 + t1A + t-(a+l)A(+) +(t)
0 1(t)

where

(4.78) A(t) = a(t)t
-(+1 0, ae Cb((,))

The problem (3.1), (3.2) can now be rewritten as
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(4.79) y- ta Ait'y - t'A(t)y + t'f(t)
i-0

(4.80) y e C(1I,-])

and can be regarded as a perturbed system of

(a+1)Z

(4.81) - t nt-i - t f(t)

(4.82) y e C(E1,w])

Markowich (1980b) has proven that the n x (r0 + r-) solution matrix E*
0 

of (4.79),

(4.80) fulfills for large t:

(4.83) I1(j
0
(t) - 0(t)[G ,G_]1 ( const. t (£nt) 1#(t)[G,G_]

where 0 4 j 4 2n holds and *(t)[G 0 ,G_ ] is the general solution of (4.81), (4.82). V
Moreover a particular solution E*(f) of (4.79), (4.80) can be constructed if f fulfills

(4.31) and

(4.84) l*(f)(t) - (Hf)(t)I f const. t
1 8 

(Xnt)J%(Hf)(t)I

r0+r

holds. The problem (3.1), (3.2), (3.3) is for all 8 e R 0 and f fulfilling (4.31)

uniquely soluble iff the (r0 + r-) x ( 0 + r_) matrix

(4.85) BE*0(1) is regular

Of course, B is a ( r + r-) x n matrix.

For the existence theory and for the following stability theorem it is sufficient to

require that (4.77) holds with I - r and with A(t) - t a(t). This implies the

right hand sides of (4.83) and (4.84) to equal const.(£nT)JT
-
.

We consider the asymptotic boundary value problem

(4.86) x; - t aA(t) - tf(t) 1 tT MT~ tft, 1 t (T,

(4.87) BxT (1) = 8 ,

(4.88) S(T)xT(T) - y(T)

and show that the construction of S(T) and the stability estimte (4.34) depend only on

the validity of (A2 ), (B2), (C2) for the perturbed problem
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(CL+1 )r
(4.89) XT - am( I A = t'f(t)

i=

(4.90) S(T) xT(T) Y(T

if (4.85) holds.

Theorem 4.2. Let A fulfill (4.76) and let (4.85), (A2), (B2), (C2) of Theorem 4.1 hold

where

is the fundamental matrix of the homogeneous problem (4.81). Then there is a unique

solutio2n x T of the problem (4.86), (4.87), (4.88) for T sufficiently large and for all
ro+r- r +(r0 -r0 ) I

6 ER ,Y(T) C R + f C CU[I,T]l. This solution xT fulfills the estimate

(4.34).

We Write (4.87)

(4.91) x- ( A t- 14t4T
T; i= iJ)T -t (Z(t)xT + f(t)), (t

and write the general solution after having set x T = Ev T as

(49) v (t) = P (t +(,) 8G,P (tp (t) eQt-(T (-)D 1
(49) T (1) 6 (2) (3) T 0

+ 0~t -Qtt 2a'G + (H A )EVT)(t) + (H ( )f)(t)

We restrict t to the interval (6,T) where 6 is sufficiently large, so that

(4.93) ()A:CE,]+C((6,T])

holds. Then the following estimate is fulfilled:
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(2~ (2-(2)-u

(2)9I = NO max I)AIIT H + Auk I 1 +UT A[ 6,T] T[6.],Tmx]I
(4 }IUI[6,T](1 lUl [ 1,T] + T

[6,T]'(
6
,T]4

+ I+ I H[6,T] - [6,T]

' const.(ri.[6,T ) + 6-E(Tn6))Ia| 6 TI] 21N

(1) (1)for all T > 6 ) T sufficiently large. This follows from the estimates forTH+ T H

given in Chapter 2 and from the estimates for H0  given in Markowich (1980b). Therefore

(I - HTAE) is invertible on C([6,T) and we get:
0 0

(4.95) v (t) = T W&(t)1 + 1-& + T(f)(t), t e [6,T]
T T + 1 T-2 T

0 0
where T +, T; fulfill the equations:

(49) 60 -(2)- 0 ~ * 6+*) 1) )~.QT(~D 1
(4 96) T*+ H T + [ e G+P(2)( )P(3) TA E ( 1 ) e )

(4.97) o - (2)- = EG0 'G-
T *- HTAET GG_

and T6(f) fulfills

(2)- (2)(4.98) T (f) - Ii2TAT (f) = H T)f

By evaluating at the boundaries the following block system is generated:

BET* 0 (1) BE kP (1) 13E{ yf)1
T + T T2f(

ST)E Ii CT) S(T)E *I T) = (T) - S(T)E Tlf)(T)

Obviously, the matrix in the (1.1) position is bounded as T . From (4.97) we derive:

(4.100) S(T)E T'0(T) - SCEO(T)[G0,G_] + S(T)E(H T2)A T (T)

From the definition of H we conclude that
T

HC2)'T 0(T OQCT) ' T e-Q~sas -1= 0
S(T)E(H 2)-1 

0 T = S(T)EPCT) f 5 0e (s)E A (s) s +

+ S(T)E(T H (2)AT ) (T)
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where D0 is the projection onto the direct sum of invariant subspaces of D belonging to

solutions which decay to zero.

Now from Markowich (1980b), Chapter 4 we conclude

(4.102) 1( TH
2
')u)(T)I I(H )(T)I = O(T ) u e C([6,T])

This and (B2 ) guarantee that

(4.103) IS(T)ET .(T)I = o(T
- 1

0
+ 1) ( - i

holds. Similarly (4.96) implies

0
(4.104) S(T)ET*J(T) = S(T)EP( 1) (TI[G+,P(2 ) (T)P(3 ) (T) 0] + o(T

-

Markowich (1980b) has proven that

(4.105) *-
0
C - AE0C - *[G0 ,G_]

where H is defined as H only the integrals are stretched to - instead of T and
T

C is a regular (r 0 + r-) x (ro + r_) matrix. We subtract (4.97) from (4.105) getting

(4.106) 0 C- T0) - E0C + H (2)E =0
T- - T T-

or

0 - ,0)= H(
2
) 0 :0 -0 (2)- 0

(4.107) (*0C T. - T T E(C - ) + (;aE*0C - H2) AE*0C) , 6 t T

and therefore

(4.108) 0 C- T01 const.la - H(2)A[,
- T - E6,T] T [6,T]

By continuation to [1,T] we get

(4.109) lim 1* 0C - T , = 0
T - T~ [ 1,T]

so that

(4.110) T0 (1) = *0(1)C + o(1) as T
T-

Also we derive

(4.111) S(T)ET*(f)(T) = S(T)E(H 2)f)(T) + o(T- (+)(r-))Hf , .
TT 16,T]

Theorem 4.2 follows now from (4.103), (4.104), (4.110), (4.111) by considering the system

(4.99) as in the proof of Theorem 4.1. The convergence results change correspondingly to

(4.83), (4.84):

(4.112) y-x TI 1,T ] 4 const.(T( +l)(r IS(T)E (T)(G 0 ,G_1 + II(Hf)(T)N) + T-C(EnT)j)
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5. Nonlinear Problems

Now we deal with problems of the following form:

(5.1) y f(t,y), 1 4 t a , N ,

(5.2) y e cC[1,-])

(5.3) b(y(1)) - 0

f : R + R7 is supposed to be continuous in (-,y(-)). (5.1) and (5.2) imply that

45.4) f(-,y(-)) - 0

holds. So y(-) can be calculated a priori as solution of a system of n nonliner

equations. If

(5.5) rank(af%(Y) n

then the solution manifold is discrete so that the possible values of y( ) are known a

priori. This case has been treated by de Hoog and Weiss (1980b). We will asume that the

rank of this matrix is smaller than n, so that we have to expect a continuous solution

n
manifold yW() with P C S C R , n ( n. We assume that we have determined such a n,

dimensional manifold and that f(t,*) e C CR ) for all t e (1,] and

af(t,y(M))-i

(5.6) A(t,lJ) y (1)t for t > t

holds. We calculate the fundamental matrix E(u)OCt,U) of the linearized system

(5.7) , = t '(t,U)y

as an asymptotic series. E(P) transforms A0 () to its Jordan canonical form J0 (p).

Now we restrict p to subsets S C S so that r+, r0 , r_, r which are defined for

J 0C) as in the last chapters are independent of p in S. Moreover we require that

there is a n x r0 - projection like matrix 0  independent of 1 C S so that

(5.8) I(t,)[G 0,G_]I ( CCP)t (tnt)
j
, C CW) > 0

and that
-2(+1)r-C 2p)

(5.9) If(t,y (p))I ( C(P)t , c2 (p) > 0, ii E 5
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holds. Assuming that fy is locally uniformly Lipschitz continuous around y.CP).

Markowich (1980b) showed that there are solutions y = y(*,un) in the space of functions

in C([d,-]) which decay to a finite limit at least as fast as t
(
a
+
l
) -

e . ()nt)
2 j

where E = min(£c , 2 ) and 6 sufficiently large. These solutions fulfill the estimate:

(5.10) *y(t,u,r) - y.(1) - E( )O(t,P)[G 1]1 4 const( )-(Xnt)2jt
- (

a
+ 1)

r-e

r0+r

for n c R . For many important applications

(5.11) flt'y.(1)) E 0

and 0(t,p)[G0,G_] decays exponentially. In this case the right hand side of (5.10)

contains the exponential factor 10(tl)(G0 ,G_]I
2  

and the algebraic and logarithmic

factors change. It follows from this analysis that the boundary value problem (5.1),

(5.2), (5.3) is soluble if the equation

(5.12) b(y(1,u,r)) - 0
n +r +r

is soluble where b : Rn + R 1 0 - and y(t,wn) denotes the continuation to [1,]

(if it exists). We assume that b e CI(Rn).

The approximating problems have the form I

(5.13) x; - tf(t,XT), 1 4 t 4 T

(5.14) b(xT(1)) - 0

(5.15) S(xY(T),T) = 0

and S : R
+ 1 

_ R 
n- (n 1+ r0+ r

_
)  

We assume that we have obtained a solution

y* E Y(.,*,n*) fulfilling (5.10) and that this solution is isolated, i.e. the linearized

problem

(5.16) w' = t
s 

af(t,y*(t)) way

(5.17) w e C([1,-])

(5.18) ab(y*(1')) w(1) = 0ay(1)

has only the trivial solution w E 0. Using (5.10) we get for f y Lipschitz continuous

-((1+1);- ( )

(5.19) af(t,'y*(t)) A(t,u*) + O(t 2
3y

From Markowich (1980b), Chapter 4 we derive that the general solution of (5.16), (5.17) is
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(5.20) w = E(U*)*0(t,U*,n*)K, e Cr-+ •

0
° is a n x (Cr + r_) matrix.

For the following we asume that

(5.21) r0 
= 

n1 + r0

holds, which means that the nonlinear problem and the linearized problem have solution

manifolds of the same dimension. The isolatedness of y* now implies that the

Cr + r_) x (r + r) matrix

(5.22) 3b(y*(1)) E( .) 0 is regular.
ay(1) i

Now we define:

(5.23) (Fy)(t) = (t-'y
' 
- f(t,y),b~y(1)),S(y(T),T) - S(y(T),T))

(5.24) F : (C(EI,-]) n CI(tI,-)) {>It-y C([1,])},1. )

+ (C([l,w]) x R
n
,l

l
v,a)

l  
IvI + Hal)

and

(5.25) (F x)(t) = (t-
m
x
' 
- f(t,x),b(x(1)),S(x(T),T))

T

(5.26) FT : (C ([1,T]),Ixl = NXI + T [1,T]) +
T (1,T] [+T

+ (C(C[1,T]) x Rn,l(w,b)I = (1wU ,T] + nbl).

All involved spaces are linear normed spaces and the space on which FT is defined is a

Banach space.(*) We calculate the Frechet-derivative of FT(y*) where y* is an

(isolated) solution of F(y*) = 0 assuming that S e Ci(Rn):

(5.27) ((CFy*))z)(t) - at-'z
'  

Of(t,y*(t)) z b(y*(1)) 3S(y*(T),T))
ay y(l) ay(T)

Assuming that

(5.28) iy (t,.) is locally Lipschitz continuous in the fl*[1,_,-norm

around y* uniformly in t e [1,-]

(*)Norms are always assumed to be taken in the appropriate spaces.
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(5.29) a(1 (y(l)), 3y(T (y(T)) are locally Lipschitz continuous

around~ y*(1) resp. y*(T)

hold, we derive

(5.30) IF ,(y1  - Yy 2 )V 4 const.my 1 - 21

f or

(5.31) Ry* - Y I + T ly*' - y. os. ,

Moreover Theorem 4.2 assures that the problem

(5.32) =. ta af(t,y*(t)) z+ tcf(t)

(5.33) Db(y*() (1)

(5.34) 'S(y*(T),T) z (T) y(T)
@y(T)

ro+r- n-(r +r_)
is for all f e C(11,T]B, a3 c R ,y(T) c R uniquely soluble if

(5.35) y(T),T fulfills (A 2), (B 2), (C2 )

where

(5.36) E(kJ)()=El*)O(t,p*) = EU(*)P(t~li*)t D(U* )eQ(t)J))

is the fundamental matrix of the problem

(5.37) w =t aw

It also implies that the unique solution fulfills

(5.38) 1XI [1T lx'I 11T const. T (a+l )r (nr) 
2
j (f,P,y(T))I

so that F;!(y) is invertible and

-1(a+ 1)r 2)
(5.39) I(F(y-))_ I (const. T (XnT)

2

We have used that (5.19) holds. From the nonlinear stability-consistency concep' in

Spijker (1971) we conclude that

(5.40) NX.T - y*'(1,T] + T__1- T (y*)*I 11T const. T (al)r ( .nT)
2 

IS(y*(T),T)I

if
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(5.41) IS(y*(T),T) 4 P IT-
2 (c+l)r(InT)

-4 j

holds, where p1  is sufficiently small. xT is a solution of FT(X) - 0 which is unique

in a sphere whose center is the restriction of y* to [1,T] and whose radius is smaller

than p2 T -(a+l)r(nT)
-2 j with p2  sufficiently small. This holds in the

lxI[1,T ] + T-a x' 11,T]-norm. From (5.40) we conclude

(5.42) RX T - y*(1,T] 4 const. T(Q+)rnT)2 j IS(y*(T),T)I

if (5.35) and (5.41) holds.

Because of (5.10) it is sufficient to require that (A2 ), (B2 ), (C2 ) hold for the
as as

matrix iy (y(U*),T) instead for LS (y(T,U*,n*),T). Moreover (5.41) is fulfilled ifay D
(5.43) S(y.(P*),T) 5 0 for T sufficiently large

and 5.4 as -2 - ), 1 > 0

(5.44) 12- (y.(J*),T)(y(T,u*,n*) - y.(P*))l - O(T 2 0+ 1  , > 0
ay

In most cases of physical interest y*(T) converges exponentially so that (5.44) is
asfulfilled automatically. Therefore, if (A2 ), (B2). (C2 ) hold for Ts (y.(I*),T) and if

(5.43) is fulfilled, convergence follows at isolated solutions and the order of convergence

can be estimated by (5.42).

For the case when f is independent of t Lentini and Keller (1980) have generalized

the projection condition and an example for the construction of an appropriate asymptotic

boundary condition in the other case will be presented in Chapter 6.

-38-



6. A Case Study

The problem we analyse is a similarity equation for a combined formed and free con-

vection flow over a horizontal plate (see Schneider (1979)). 'ia governing equations are

Y2

(6.1) x

Y
3

x

y1 l k = xf(x,y), 0 4 x <
- (1 + -)Y 2 -

1 xylY4

- (1 + -)4

( 01 0 l0 0

(6.2) 0 1 0 0 y(O) (
0 0 0 1

(6.3) y E C((0.1)

From (6.1) we conclude that
(6.4) y - y.() _ (U,O,O,O)T, e R

and

a a 0 0 0 1 0 0

af(x.(P)) 0 0 0 0 0 0 1 0

(6.5) l( 0 1 k +1 0 0 0

A 0  A ~I )

For this problem a 1, r -2 hold. We calculate:

(6.6) jy = A E E diag(1,11,- 2-+)

0 A0  AI - 1
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(6.7) Cu () - E-1 A1 WuE - A1 (11)

Markowich (1980b) calculated en asymptotic expression for the fundamental matrix O(x,1j)

of the system

(6.8) w'-x(3 + -1 (p))W0 x1

"1 1 O(x- ) 0(x1)I

1~~ 2 2
10 x ' x' 0(x 1 ') 2 _

(6.9) O(x,p) = - 2 diag(1,x,1,x 2)diag(1,1,e 
4  2x e-

P(x,1i) x D e Q(xP)

Markowich (1980b) showed that the problem (6.1) has solutions yC.%kiA 2 ' V) which fulfills

2x P

(6.10) Iy(xE1#C2 ' 0) - y.,Cu)I 4 const. x 2e T- - , x suff. large

where the constant depends linearly on 9 1 IE2 These solutions are in A y()
PI4

where

(6.11) AcO.{ulu(x) = x -4EU~x), U 6 C b ([0O,))j, C > a

From (6.9) we conclude that

(6.12) a- [1,0,010] T, aG0  (0,1,0,0] T

The simplest choice of S is a linear function so we set

(6.13) S(X C s1CX),s 2CX)'s3CX),s4 (X)]

Condition (B 2) of Theorem 4.1 applied to our problem gives

(6.14) 81 (x) (x-2)

We choose s 1Cx) E 0. Condition (C 2) gives

(6.15) (s2 (x)x- 1) = O~x2

Therefore any matrix S~x) of the form

(6.16) S(x) - [0,s 2 Cx),s3 (x),S 3 (x)J

where

(6.17) s C x) - const. *0, s C x) - 0(1), s 4 x) =0(1)

fulfills (A2 ), (B2 ), CC2 ). A natural choice is the following asymptotic boundary condition
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6. A Case Study

The problem we analyse is a similarity equation for a combined formed and free con-

vection flow over a horizontal plate (see Schneider (1979)). &a. yovernlng equations are

Y2
(6.1) x

Y3
x

y x 1 "1 k xf(x,y), 0 < x <
- 2 ( 1 + - 1) y 2 - !2i 4

1 x 2

- 2 (1 + x l)4

1 0 0 oJ 0o
(6.2) 0 1 0 0 1:101 -1

0 0 0 1J1

(6.3) y e C([O,-])

From (6.1) we conclude that

T
(6.4) Y . Y(U) = (U,0,0,0) p e R

and

0 0 0 0 0 1 0 0
af , y ,,€x..aUij 0 0 0 0 0 0 1 0

(6.5) 0 - 0 0 k 0x

[0 0 0 0j~ [ 1
I 2

A A (i)

For this problem a = 1, r = 2 hold. We calculate:

0 0 0 01
0 0 0 0

(66O E-IAoE I2 ig111-1Jo 0 0 0 -1 k tg111-

1
L0 0 0 2
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(6.7) J (Cu) E-1A(PE AN

?farkowich (1990b) calculated an asymptotic expression for the fundamental matrix *(x,p)

of the system

(6.8) w'-X(j + -J (pfw0 x 1

F1 1 O(x ) O(x-)

ox x OX 2 OCP i i

(6.9) 0(x,11) 0 1 1~ -~ ) diag~l,x,1,x 2)diag(1,1,e z- 'xeT !

xD eQ(x,uj)

Markowich (1980b) showed that the problem (6.1) has solutions YOA, A~ P) which fulfills
12'

2 2

(6.10) Iy(xAVE 2 P) - y.u)I 4 const. x 2e ,- x suff. large

where the constant depends linearly on Y& 2 . These solutions are in A +,

where

(6.11) AC, = {ulu(x) _ xm"4-U~x, U e C b((0,-))1, C > 0

From (6.9) we conclude that

(6.12) G0 - 11,0, 01 T, zo = [0, 1,0,01 T

The simplest choice of S is a linear function so we set

(6.13) S(X) = (s1CX),s2CX),s3 (X),s4 (X)]

Condition (B2) of Theorem 4.1 applied to our problem gives

(6.14) s1 (x) - 0x-
2 )

we choose s ICx) E 0. Condition (C2 ) gives

- I -1 2
(6.15) Ca C xx) O~x

Therefore any matrix S(x) of the form

(6.16) S~x) - [0,s2(x),s 3 (x),s 3 (x)]

where

(6.17) 0 2Cx) * const. $ 0, a 3 x) - 0(1), s C x) =0(1)

fulfills (A2), (B2), (C2 ). A natural choice is the following asymptotic boundary condition
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(6.18) [0,1,0,0]vx(X) - 0

which assures convergence of the order

(6.19) Ivx - YS[1,T const. x
6
exp(- X) 2 x

where M* is the parameter value of the actual solution y(*, i', ) of (6.1), (6.2),
1 2

(6.3) which is assumed to be isolated. (6.19) holds because of

(6.201 [0,1,0,0]y.(Ij) E 0 for p C R

and because of (5.41).

Numerical calculations can be found in Schneider (1978).

-
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